North Central/Eastern Kentucky Water and Wastewater Operators Association Annual Fall Conference

October 23, 2013

KWYQA

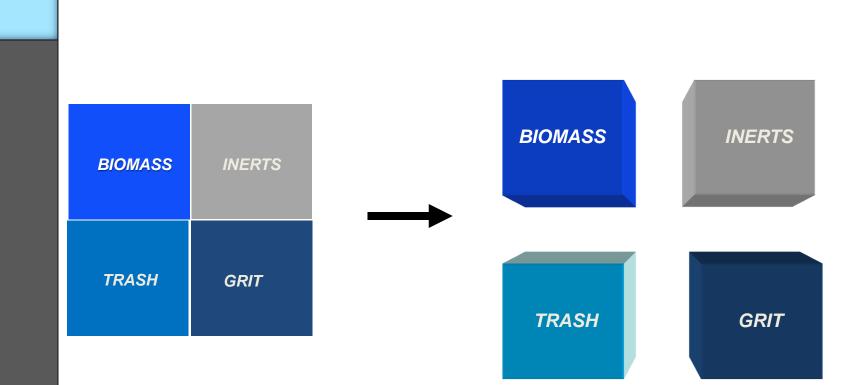
MLSS Constituents and Solids Balance Session 2 Dan Miklos, Senior Associate, Midwest Region

HAZEN AND SAWYER Environmental Engineers & Scientists

Agenda

• What is in the MLSS

- Trash/Grit/Inerts and Biomass
- Inventory Control
- Ballasted Settling
- Estimating the Portion of MLSS that is Biomass
- Solids Movement in a Plant
 - Simplified Mixing Formulas
- Questions

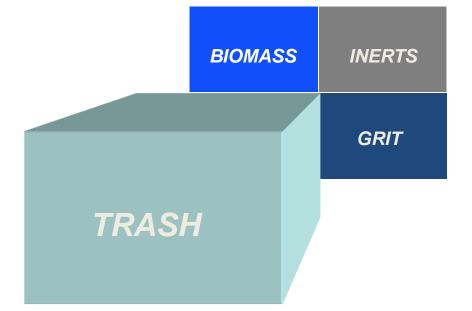

Biological Solids

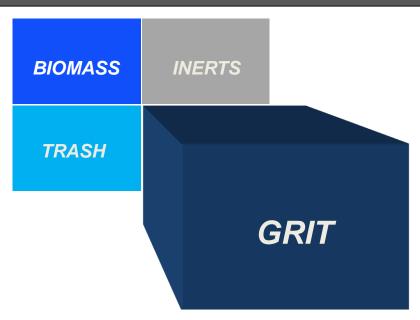
I Wonder How Much of that MLSS is Biomass?

Mixed Liquor Biological Content


- What is in 240 gallons (1 wet ton) of 3,000 mg/L Mixed Liquor?
 - 2,000 pounds of MLSS including water and solids (approximately 240 gallons).
 - 0.003 or 0.3% solids is 6 pounds of solids
 - 0.997 or 99.7% water is 1,994 pounds of water
- Biological cells are approximately 80% water and 20% solids.
 Therefore, on a dry basis, if all 6 pounds of solids were biological:
 - 0.0006 or 0.006% solids 1.2 pounds of solids and 0.024% cell moisture (4.8 pounds of water)
 - Biological content can vary and is likely to be less than 40% of the MLSS - less than 0.6 pounds.

KWWQA

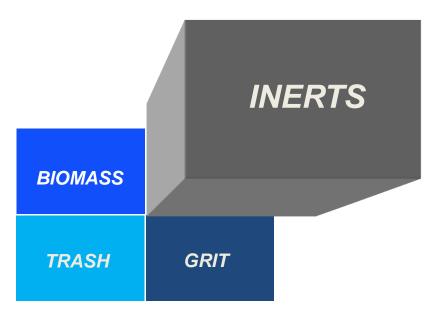

The biological growth generated by the removal of soluble organic wastes.



The non-biodegradable organic material present in the raw influent:

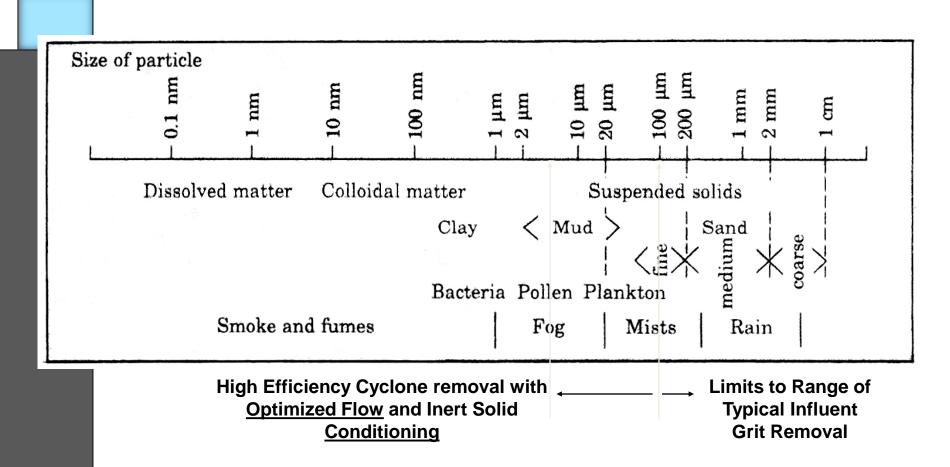
lint , hair, synthetic fibers, and plastics.

KWWQA



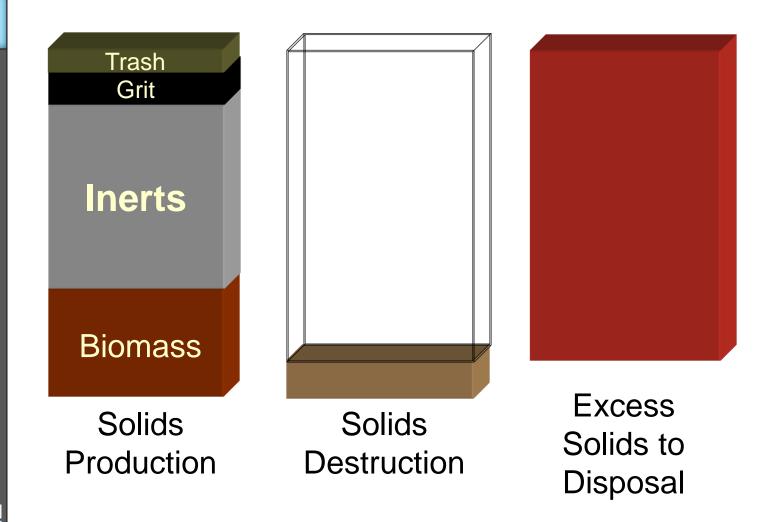
Part of the larger inert particulate material commonly known as grit:

not degradable, not organic.



Inorganic salts and fine sand similar in size to the biological solids.

Basic Components of Activated Sludge Mixed Liquor Particle Size Comparison

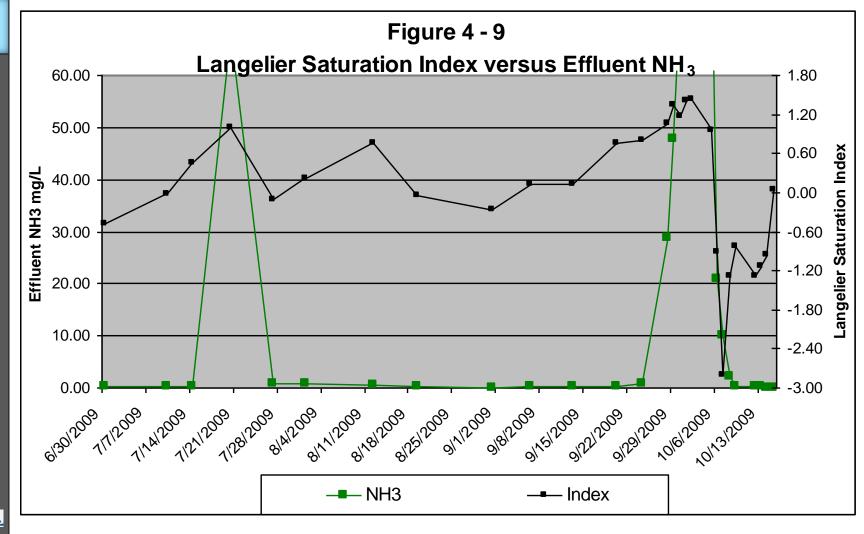


MLSS Viability and Non-degradable Concentration

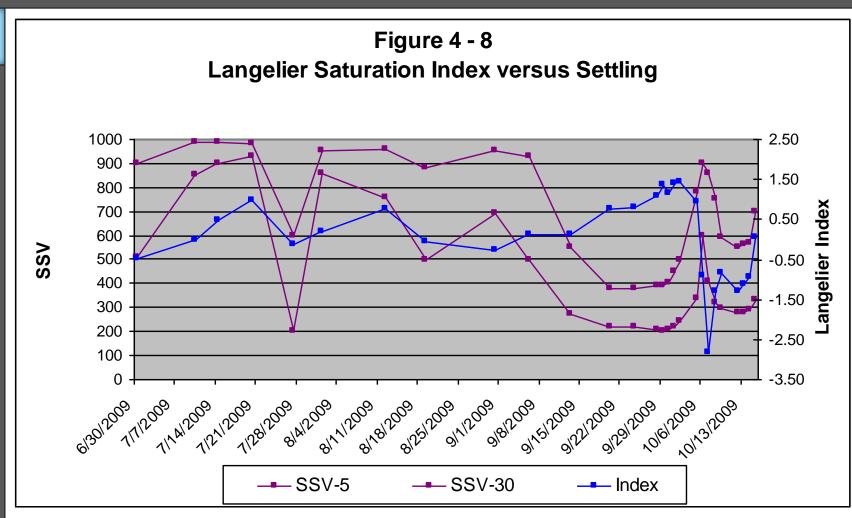
- Two (2) factors can change the balance of nondegradables and biomass in the MLSS
 - Longer sludge age would result in more decay and increase the concentration of more inerts and trash
 - Chemical addition for Phosphorus compliance will re-balance the MLSS with more inerts given the same growth and decay pressures on the biomass
- Some plants operate with a different balance of inerts/trash due to industrial loading, chemical addition to balance pH or inerts can be added to improve settling.

Solids Balance with Lime Addition to a pH of 8.0 S.U. (Discharger using Lime for Nitrification)

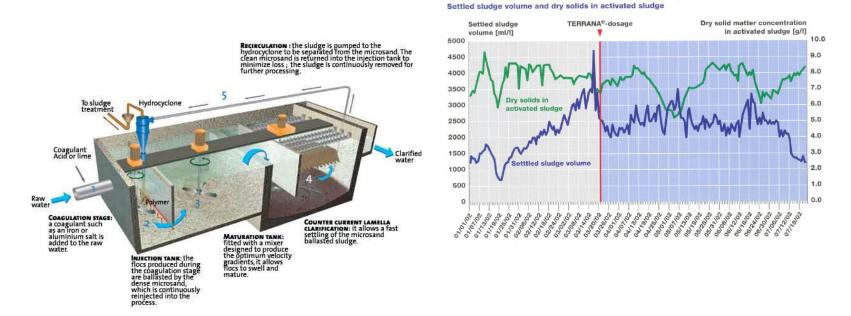
12


Restoring Alkalinity for Nitrification

- In our example of high inerts in the MLSS, lime is being used for pH adjustment.
- Lime is very basic and the hydroxide ion removes the hydrogen ion (acid) in solution in the plant and raises the pH.
- The free calcium ions also react with the excess carbon dioxide and form an insoluble milky product, calcium carbonate
- If too much lime is added, a significant amount of insoluble calcium carbonate is formed. Those inert solids become incorporated in the MLSS and begin to crowd out the biology.


Using Calcium Carbonate Solubility to Control Settling?

- Since calcium carbonate solubility loads the MLSS with fine inerts with a high specific gravity and dense structure, the MLSS settling is affected.
- The result is like adding sand to feathers. As expected, as the insolubility of the calcium carbonate increased, the settling rate increased (the SVI decreased).
- The graph shows settling correlates closely to the MLSS pH (5 minute and 30 minute settling).
- As biological viability increases, the SVI increases and settling slows.


KWWQA

KWWQA

Ballasted Settling

- High Rate Treatment (Actiflo) is an example of ballasted settling.
- SUD-Chemie uses Bentonite
- ~ 0.5 to 5 lb/35 cf of tank volume for filamentous control or ~250 ppm as a minimum dosage.

- Volumetric Analyses
 - Depth of Blanket
 - Procedures for determining average depth of blanket
 - Core Sampling
 - Common Error in Core Sampling
 - » Speed of sampler entry is determined by foot valve
 - Cloudy Versus Defined Sludge Interfaces
 - Location/Time of Sample Points
 - Sludge Detention Time
 - Troubleshooting
 - » Sludge Withdrawal Rate
 - » Flow Splitting to Settling Tanks
 - » Filamentous or sludge quality indicators

- Volumetric Analyses
 - Centrifuge
 - Volumetric Analyses in Percent (Volume to Volume Comparison Based on Centrifugal Force and Time Constant)
 - Typically used for wet stream analysis (centrate testing)
 - Location/Time of Sample Points
 - Percent Spin IS NOT EQUAL to mg/L (if used for solids)
 - Test is Based on Constant Speed/Constant Time/Variation is Sludge Mass and Quality
 - Specific Facility Sludge Units

- Volumetric Analyses
 - Centrifuge (con't)
 - Weight To Concentration Ratio

W.C.R. = MLSS (mg/L) / ATC (%)

- Common Errors in Application
 - » WCR is a comparison that is not constant (as is SVI)
 - » Spins can be used for sludge quality and mass calculations, but the volumetric error (expressed as a sludge quality value) should be compared to gravimetric results.
 - » SSC values can be determined with spins also. Same caution with ammonia, Phosphorus and ORP results to confirm solids concentration setting.

- Volumetric Analyses
 - Settleometer
 - Volumetric analyses in percent (Volume to Volume Comparison based on gravity and time constants)
 - Location/Time of Sample Points
 - Test is Based on Constant Separation Force (Gravity) / Constant Time. Variation is Sludge Mass and Quality
 - Settled Sludge Volume Measurement Points/Trend Points
 - » Flocculation Time (5 Minutes)
 - » Settling Rate (30 Minutes)
 - » Compaction Rate (60 Minutes)
 - » Rise Time (Sludge Detention Minimum)

- Volumetric Analyses
 - Settleometer (con't)
 - Qualitative and Quantitative Analyses
 - » Interface (readings and interface quality)
 - » Supernatant Quality (turbidity and clarity)
 - Settled Sludge Volume (SSV) and Settled Sludge Concentration (SSC) determinations.

Settled Sludge Concentration
SSC = 1,000 * (MLSS) / SSV)

- Diluted settling tests
- Stirred settling test

23

- Volumetric Analyses
 - Settleometer (con't)
 - Volumetric to gravimetric comparisons: Sludge Volume Index (S.V.I.) and Weight to Concentration Ratio (W.C.R.)
 - Filament warning on settling
 - » 5 minute flocculation time is early warning for onset
 - Compaction rates after 30 minutes.
 - Maximize solids concentration while minimize Phorphorus release.
 - Knee of the curve calculation for RAS control
 - Settled Effluent Quality (quantitative? compare to field?)
 - Sludge Volume Index

Traditional Concepts – Sludge Quality

Mins	SSV	SSC		1000	- 14,000
0	1000	2,500	mg/L		,
5	700	3,571	mg/L	900	42.000
10	550	4,545	mg/L	800	- 12,000
15	400	6,250	mg/L		
20	350	7,143	mg/L	700	- 10,000
25	325	7,692	mg/L		
30	300	8,333	mg/L	600	- 8,000 J
35	275	9,091	mg/L	S 500	
40	250	10,000	mg/L		, v SS 000,6 -
45	225	11,111	mg/L	400	-, 01
50	215	11,628	mg/L	300	4 000
55	205	12,195	mg/L		- 4,000
60	200	12,500	mg/L	200	
65	200	12,500	mg/L	100	- 2,000
70	200	12,500	mg/L		
75	195	12,821	mg/L	0 +	- 0
80	195	12,821	mg/L	55 55 55 55 55 55 55 55 55 55 55 55 55	
85	195	12,821	mg/L	Minutes	
90	190	13,158	mg/L		
95	190	13,158	mg/L	SSV SSC	
100	190	13,158	mg/L		

 Knee of the curve. Thickened 4 times in 45 minutes. After another 45 minutes, only thickened 1.3 times.

KWWQA

- Volumetric Analyses
 - Settleometer (con't)
 - S.V.I. = 30 minute SSV / MLSS in grams
 - Common errors in application
 - » Equation changes with solids concentration.
 - » 30 minute reading is for low solids concentrations and stable sludge quality. Utilize other times such as 5 minutes, 1 hour and 2 hours.
 - » 80 120 mls/gm is based on ideals at low MLSS concentrations.
 - » RAS concentration should be checked with ammonia and Phosphorus to verify RAS control setting by concentration.

Traditional Concepts – Sludge Quality

- Volumetric Analyses
 - Centrifuge (con't)
 - Weight To Concentration Ratio

W.C.R. = MLSS (mg/L) / ATC (%)

- Common Errors in Application
 - » WCR is a comparison that is not constant (as is SVI)
 - » Spins can be used for sludge quality and mass calculations, but the volumetric error (expressed as a sludge quality value) should be compared to gravimetric results.
 - » SSC values can be determined with spins also. Same caution with ammonia and ORP results to confirm solids concentration setting.

"Math is My Friend" – Mixing Formulas

- Mass Balance Calculations
 - Solids movement in the plant
 - Aeration and Settling by pounds formulas:
 lbs in versus lbs out
 - *RAS Flow Rate in Equilibrium:* (INF * MLSS_{tss}) / (RAS_{tss} - MLSS_{tss})
 - Simplified Mixing Formulas:

<u>RAS Flow Meter Check with Solids Tests:</u> RAS Flow Percent = $MLSS_{tss} / (RAS_{tss} - MLSS_{tss})$

<u>Maximum MLSS Concentration at a Given SSC</u>: MLSS = (RAS Flow Percent * RAS_{tss}) / (RAS Flow Percent+ 1.0)

"Math is My Friend" – Mixing Formulas

Mass Balance Calculations

- Simplified Mixing Formulas (con't)

 $\frac{RAS Sampling Check with Flow Metering}{RAS_{tss}} = MLSS_{tss} + (MLSS_{tss} / (RAS Flow Percent))$

<u>Clarifier Sludge Detention Time</u>
 Clarifier Sludge_{dt} = (Sludge Blanket Ibs / RAS Ibs)

<u>Clarifier Sludge Flow Demand</u>
 CSFD = (RAS Flow * (RAS_{tss} - MLSS_{tss})) / (SSC_{tss} - MLSS_{tss})

<u>CWWQA</u> 29

Any Questions?